首页 > 新闻中心 > 爱游戏体育官网网页入口
发布时间: 2024-03-03 21:12:20 | 作者: 爱游戏体育官网网页
大家对电机的认识可能就是高中课本里的交变电流章节的例子,电刷+外磁场+通电线圈。这是最经典的有刷电机。但是今天咱们谈论的是另一种更高效、性能更好的电机——无刷电机。
如图是无刷电机的等效模型。内外两个灰色的轮子一个是定子,一个是转子(具体哪个是定子哪个是转子根据电机类型不一样)。此时转子和定子是完全重合在一起的,没有扭矩的存在。
咱们定性地看,当外部的定子磁场扭转一个角度时,内部的转子会跟着旋转。这样一个时间段就存在扭矩了。
所有的电机扭矩的大小正比于内外两个磁场的叉乘,即图中围出的平行四边形的面积。可见两个磁场重合时,叉乘为0,扭矩也为0,和之前的直观认知相符合。显然,当两个磁场呈90度时,平行四边形面积最大,此时的扭矩也最大。
实际的无刷直流电机(BLDC)或永磁同步电机(PMSM)通常用三相****交流绕组线圈充当定子,永磁体作为转子。我们大家都希望通过电路控制定子绕组的输出,使之能够能产生一个大小尽可能恒定的旋转磁场,让转子和定子的扭矩达到最大值。
FOC(Field-Oriented Control),即磁场定向控制,也称矢量变频,是近几年较为主流的高效控制无刷直流电机(BLDC)和永磁同步电机(PMSM)的选择。
要得到一个恒定大小的旋转磁场很容易。当今主流的BLDC和PMSM电机定子均采用的是三相绕组,即各个绕组上的交流信号就是相位互差120°的信号。根据三相电机的结构,我们大家可以将一个恒定大小的旋转电压矢量分解到相位互差120°的方向上。如下图
从上图能够正常的看到,只要控制电机的三个绕组产生相位互差120°的大小跟着时间按正弦规律变化的3个分矢量,就能够获得我们想要的旋转磁场
然而,在实际的电机控制中,由于齿槽效应、磁通畸变等因素,电机的转矩会产生大量的波动,要一直地对控制信号做出修正。但是当电机转速较高时,电流环控制器必须跟踪频率逐步的提升的弦波信号,而且还要克服振幅和频率逐步的提升的电机反电动势。在这样的情况下,想要直接通过维持三路正弦信号得到旋转平滑、大小稳定并且从始至终保持和转子磁场方向垂直的磁场难以实现。
我们重新再回到一开始的磁场叉乘。我们得知电机的转矩只与 平行于内磁场方向(称d轴)的磁场分量 和 垂直于内磁场方向的分量(称q轴)有关(如下图)。
现在对于电机扭矩大小的控制就变成了q轴和d轴大小乘积的控制。在电机中,d轴上内磁场的大小是永磁铁产生的,是恒定的;我们对外磁场的控制实质上变成了q轴上的分量大小控制+外磁场的角度。
我们能够正常的使用编码器测量转子的内磁场角度,然后根据内磁场的角度用电机绕组产生对应的外磁场。
如上图所示,如果转子的电角度在θ1,则我们要在θ1处产生d、q轴大小的外磁场。如果转子的电角度在θ2,则我们要在θ2处产生d、q轴大小的外磁场。
我们把角度θ1的情况单独提出来,把它移到原点去,然后把x、y轴重命名为α,β。根据空间矢量的关系,我们大家可以把q、d轴的大小分解到α,β轴上。这样的一个过程是所谓的“反帕克(Park)变换”。
其实得到的结果很简单,它就是用了互差90°的正弦信号得到了大小恒定的旋转磁场。
可以大概理解为在PWM输出的基础上增加若干花里胡哨的风骚处理( ̄▽ ̄)~*)
绕了这么多弯弯,我们终于让电机转起来了。大家看到这个地方可能会说:“这是在折腾啥?(╬ ̄皿 ̄)不还是最后转成三个相差120°的正弦信号了吗?”
我们先测量电机的3相电流。电机的信号如下图所示(把相差120°的电信号看成同一个旋转向量在三个相差120°坐标轴上的投影)
根据我们之前的理论,我们应该的是两个互差90°的磁场。这里咱们又使用一个变换,把三个分磁场变换成α、β方向上的两个分磁场。这个叫做“克拉克(Clarke)变换”。
再把α,β轴上的值映射到旋转的q、d轴上,得到此时电机实际的d值和p值。这是之前反Park变换的逆过程,“帕克Park变换”
我们把测量到的d、q轴值与我们设定的值做对比,通过PI算法消除误差,再重新通过之前的流程输入到SVPWM中,这就完成了一个闭环控制,可以对定子磁场的做动态修正了。因为控制d、q是在控制电流值,所以这个环路叫做电流环。
设置d0、q0值(目标值),经过反Park变换得到Iα和Iβ,输入给SVPWM执行
测量q、d轴的值:测量电机的相电流(测量两相,通过Ia+Ib+Ic=0得到第三相),然后通过Clarke变换得到Iα和Iβ,然后通过park变换得到q、d轴的值。
把测量到的d、q轴值与我们设定的d0、q0做对比,进行PID处理。(目标是让测量值与我们的设定值相同)
调整d、q值输出,回到1.除了电流环之外,由于d、q是直流信号, 我们通过d、q也可以更轻松地控制电机的转速和旋转位置。比如设定电机转速为1000Rpmin,编码器测得当前转速为500,同样用PID算法增大q值就可以加大扭矩,让电机的速度加快了。这个环路叫速度环,即在电流环的外面加一层,改变q、d设定值来改变速度。当然我们也能加上位置环,通过对速度的积分能够获得电机的位置,计算位置误差进行PID调整。看ヾ(✿゚▽゚)ノ,我们把对三相交流正弦信号的控制转换成了对直流信号d,p的控制,这样优势就出来了,很nice~
除了FOC之外,还有别的控制电机的方法,比如梯形波式控制、弦波控制等。详细的介绍可以借鉴这篇文章
简单概括,弦波式换相能让电机在低速下运转平稳,但在高速运转下效率却大幅度的降低;而梯形波式换相在电机高速运转下工作比较正常,但在电机低速运转下,会产生力矩的波动。因此,矢量控制是对无刷电机的最佳控制方式~
力矩、扭矩、转矩这三个词语在行业内经常被工程师们混着用,大家也都觉得这三者是同一个概念,测试时也只是关注一下其额定值和峰值。今天就来浅析一下三者的区别和相关的测试项目。 一、力矩、扭矩、转矩的来源与区别 提到力矩,我们立刻会想到杠杆。作用力和支点与力作用方向相垂直的距离的乘积就称为力矩。力矩的单位是牛顿-米。 图1 杠杆力矩 扭矩、转矩则是转动的力矩,对于转动的物体,若将转轴中心看成支点,在转动的物体圆周上的作用力和转轴中心与作用力方向垂直的距离的乘积就称为转矩。当圆柱形物体,受力而未转动,该物体受力后只存在因扭力而发生的弹性形变,此时的转矩就称为扭矩。 图2 扭矩、转矩 因
的差异和测量 /
随着电力电子技术,新的永磁材料以及具有快速运算能力的DSP(数字信号处理器)的发展,直流无刷电机应用日益普及。直流无刷电机具有和直流电机相似的优良调速性能,又克服了直流电机采用机械式换向装置所引起的换向火花、可靠性低等缺点,且具有体积小、重量轻、效率高、电机的形状和尺寸灵活等优点,因此大范围的应用在伺服系统、数字控制机床、电动车辆和家用电器各领域,成为现代伺服技术的主方向。 本文的主要内容是基于DSP芯片MC56F8323的直流无刷电机控制器的硬件设计。最重要的包含电流环、速度位置环和IPM(智能功率模块)驱动电路的硬件设计。 2 控制器系统设计 2.1 系统硬件框架设计 MC56F8323是FREESCALE(飞思卡尔)半
控制器的硬件设计 /
在这个世界上,除了特斯拉之外的绝大多数新能源电动车卖相都差了点。比如丰田的混合动力轿车普锐斯,公认的看法是普锐斯长得像一台洗衣机。至于雪佛兰的纯电动汽车Spark EV,也以古怪闻名。 不过论及造型之奇突,以上所有车型都敌不过最近法国街头悄然出现的一种新型电动汽车——Viseo。 Viseo 的横空出世让很多人都大跌眼镜,Viseo的制造商IrisFrance公司也从来就没掩饰过这辆车的与众不同,Iris称Viseo具备许多“科技爆点”。 Viseo是一辆只供驾驶员乘坐的一人座轿车,除此之外,一般的情况下Viseo和其他普通轿车也没什么太大的差别。但是这种车的出现会让所有迷恋《变形金刚》的人都很欣慰,街
—表面贴装型小型封装有助于减小表贴面积和电机驱动电路板的尺寸— 中国上海,2023年8月24日——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出两款600V小型智能功率器件(IPD)---“TPD4163F”和“TPD4164F”,可用在空调、空气净化器和泵等直流无刷电机驱动应用。“TPD4163F”和“TPD4164F”的输出电流(DC)额定值分别为1A和2A,于今日开始支持批量出货。 这两款新产品均采用表面贴装型HSSOP31封装,与东芝之前的产品相比,表贴面积减小了约63% ---这不仅缩小了电机驱动电路板的尺寸,同时也降低了电机高度。 考虑到在供电不稳定的地区,供电电压可能波动较大,因此该新产品
驱动的600V小型智能功率器件 /
在电动自行车里,直流无刷电机的逆变器由六个功率VDMOS管和六个续流二极管组成,六个续流二极管分别寄生在这六个VDMOS管里,因而从控制器外面看只有六个VDMOS管。这六个VDMOS管通过大电流,它们的输出直接是定子的绕组,因而是整个直流无刷电机系统里最脆弱的部分。同时电机的性能和可靠性也非常大程度上取决于这六个VDMOS的性能和使用情况。下面我们来分析和讨论VDMOS管的挑选和使用。在电瓶车用无刷电机里,VDMOS管是用来作开关使用的。当VDMOS管开启时,VDMOS管流过大电流,而VDMOS管上的电压降很小;当VDMOS管关断时,VDMOS管电流截止,VDMOS管上要承受很大电压降。VDMOS管的性能主要由开启电压,导通电
撰文 潘敏瑶 4月28日下午,由高工机器人与艾利特机器人联合策划的「智造“局 艾利特协作机器人集成大比武」直播活动圆满落幕。 这场有趣而别开生面的比武在艾利特机器人华南分公司营销中心进行,邀请了深圳市江润讯能科技有限公司与松乐智能装备(深圳)有限公司两家集成商参与,由艾利特机器人华南大区负责人王少凯、艾利特机器人华南区产品与应用负责人黎晓、深圳市江润讯能科技有限公司总经理陈江、松乐智能装备(深圳)有限公司总经理胡豹担任评委,高工机器人市场总监宋莉担任主持人。 两家集成商各自组队,进行两两对决,每个队伍由2名集成商工程师与1名艾利特工程师组成,双方现场随机抽取任务书,并且根据任务书确认需要调试的应用工站,全流程包括设
拧紧工作站快速落地“大考验 /
无刷直流电动机克服了普通直流电动机以机械方式换向,很适合利用电子控制器件进行灵活控制,目前在机器人关节控制等高精度的自动化仪器中应用尤为普遍。很典型的控制算法是采用传统的比例-积分-微分(PID)控制器来控制。然而,PID控制器的性能完全取决于对其增益参数的调节。近年来,人们也提出用人诸如神经网络算法、遗传算法、和模糊逻辑控制等许多人工智能控制来设计PID控制器。其中,模糊逻辑控制以其对非线性和不确定参数的良好解决能力而著称,特别适合于去控制像直流无刷电动机这样的有着高度非线性性能和大量随机扰动的系统。本文将介绍一种基于采用模糊逻辑优化的无刷直流电机的操控方法,并进行仿线 直流无刷电动机及其数学建模 无刷直流电机
控制 /
贝加莱ACOPOS P3除具有市面上其它厂家伺服控制器的基本功能外,尺寸更小、速度更快、精度更高。现在ACOPOS P3还具有安全限制扭矩(SLT)安全功能,安全限制扭矩可以安全地扭矩,达到SIL 2 / PL d的安全等级,贝加莱成为首批提供该认证安全功能的制造商之一。 贝加莱ACOPOS P3伺服驱动器现在还具有安全限制扭矩(SLT)安全功能。 借助于直接集成在驱动系统中的,扭矩被限制在可配置的最大值。由于安全功能在驱动器中分布式运行,因此可确保将最大故障检测时间缩短至8 ms。特别是当它与其它安全功能结合使用时(例如安全限速或安全方向),SLT功能有助于实现操作人员与其机器之间的安全协作,从而最大限度地降低了操
FOC硬核和软核控制特点及吊扇典型应用方案介绍
报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案
MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~
有奖直播 同质化严重,缺乏创新,ST60毫米波非接触连接器,赋予你独特的产品设计,重拾市场话语权
伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常 ...
一、前言脱水机包括分离机、离心机等,采用交流异步电机直接驱动,低速进料、高速脱水。大范围的应用于造纸、染整、食品制药、制糖、化工等行业 ...
首先,要了解变频器与电机的基本知识。变频器是一种电子传动设备,大多数都用在控制三相交流电机的转速和输出电压,并具有节能和精细控制的优点 ...
一、变频器频率调不上去的原因1、电源问题:如果供电电压过低或电源频率不稳定,会导致变频器发生故障,频率调节也会不稳定甚至调不起,需 ...
三相交流电输入变频器是现代工业中普遍的使用的一种电力设备,它可以将交流电转化为可调速的交流电,大范围的应用于各种电机的控制和调节中。为了 ...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科